An Analysis of Strange Timezones

An Analysis of Strange Timezones

This post is going to be code-free to make things easy to follow, but if you are interested in how I mined the data for this project and produced the final visualisation, you can find the code on this site’s GitHub repository.

When I was younger, every summer my family and I would pack up our bags and take some time off to holiday in Spain. I can distinctly remember being interested in (and struggling to keep track of) the difference between the time in Spain and the one back home. It seemed strange that I found it so difficult to conceptualise this idea until one day it clicked: despite having flown in a net westward direction to reach our destination, we had somehow changed timezone in an easterly manner. How strange.

When we trace back the reasoning for this timezone choice (initiated in 1940 by Franco to align the country with Nazi Germany and Fascist Italy—his political allies) and consider the modern day benefits that the country might glean from being in line with its other western European neighbours, it doesn’t seem unreasonable for things to be this way. If however, you were an alien visiting the Earth for a day lacking any historical, political or socio-economic context—it would seem like quite an odd decision.

A Project is Born

Before I knew it, this train of thought was barreling down a hill with burnt-out brakes: “Which country has a timezone that differs the furthest from where it naturally should be based on longitude alone?”.

The idea behind this is that in a perfect world (or more accurately, one where I’m in charge) timezones would be entirely dependent on the angle that a country makes with the prime meridian (the imaginary line passing through the Greenwich Royal Observatory). This would leave the UK with its current timezone of UTC+0 and then roughly one hour would be added for each 15 degrees traveled east and subtracted for west. Each country would then choose whichever timezone best matched up with its position.

Obviously such an approach would be impractical. It takes into account no ethnic divisions, political allegiances, or many other important factors. Furthermore, it’s not clear how such a system would handle large (or to be exact, wide) countries. It would be ridiculous for a goliath such as Russia to share one common timezone. Despite these clear issues, I’m a mathematician and this is my hypothetical world, so tough luck.

With that aside, it begs the question of which countries’ timezones would differ the most between the real world and my mathematically-pristine formulation. I decided to find out just that by scraping both timezone and longitudinal data from Wikipedia. The data represents all recognised countries for which their Wikipedia listings contained the information I required (which was most, but not all).

To simplify things slightly, I decided only to look at the capital city of each country and the timezone that it resides in. This way I didn’t have to worry about the calculus of averaging population/land mass or looking at multiple timezones for one country. On top of this, I ignored daylight savings time, although this is probably for the best as it would skew large deviations of timezone towards countries which lie farther from the equator.

After performing the analysis, the twenty capitals whose timezone differed the most from my theoretical choice were as follows.

There you have it. The worse offending capital city is Rabat, Morocco with a whopping 1 hour 33 minute difference from what would be expected in a purely longitudinal system. The reason for this is that ever since 2018, Morocco has switched to permanently observing daylight saving time making UTC+1 its standard time despite virtually all of the country’s landmass being farther west than even Plymouth.

As my younger self would have expected, Spain’s Madrid comes out in a close second, 1 hour 15 minutes ahead off what would be expected. Even after these, there are still many countries with real-world timezones differing significantly from where they mathematically should align.

The really interesting observation is that every single one of these twenty worst offenders is ahead of its longitudinal timezone. I thought at first that this might have been a bug in my code and all differences had been converted to being positive. It turns out that this is not the case; there are capitals which fall behind their expected timezone. The five worse of those are shown below.

These differences are noticeably smaller. My best guess is that most timezones are ahead of where they should be for the same reason that daylight saving exists—to offer more light in the morning. A colleague of mine suggested instead that it may be to do with the location of capital cities—do these tend to be more easterly? If you have any other suggestions please do let me know. For now, I will leave you with the finalised dataset to have a look through to find whichever country you fancy.

capitalcountrylongitudetimezoneexpected_timezonetimezone_diff
<chr><chr><dbl><dbl><dbl><dbl>
Abu Dhabi United Arab Emirates 54.367000 4.00 3.62446667 0.375533333
Abuja Nigeria 7.483000 1.00 0.49886667 0.501133333
Accra Ghana -0.200000 0.00 -0.01333333 0.013333333
Addis Ababa Ethiopia 38.740000 3.00 2.58266667 0.417333333
Algiers Algeria 3.058890 1.00 0.20392600 0.796074000
Amman Jordan 35.932780 2.00 2.39551867-0.395518667
Amsterdam Netherlands 4.900000 1.00 0.32666667 0.673333333
Ankara Turkey 32.867000 3.00 2.19113333 0.808866667
Antananarivo Madagascar 47.517000 3.00 3.16780000-0.167800000
Apia Samoa -171.75000013.00-11.45000000 0.450000000
Ashgabat Turkmenistan 58.367000 5.00 3.89113333 1.108866667
Asmara Eritrea 38.925000 3.00 2.59500000 0.405000000
Athens Greece 23.727806 2.00 1.58185373 0.418146267
Baghdad Iraq 44.383000 3.00 2.95886667 0.041133333
Baku Azerbaijan 49.882220 4.00 3.32548133 0.674518667
Bamako Mali -8.002780 0.00 -0.53351867 0.533518667
Bandar Seri Begawan Brunei 114.942220 8.00 7.66281467 0.337185333
Bangkok Thailand 100.494170 7.00 6.69961133 0.300388667
Banjul Gambia -16.577500 0.00 -1.10516667 1.105166667
Basseterre Saint Kitts and Nevis -62.733000-4.00 -4.18220000 0.182200000
Beijing China 116.383000 8.00 7.75886667 0.241133333
Beirut Lebanon 35.513060 2.00 2.36753733-0.367537333
Belgrade Serbia 20.467000 1.00 1.36446667-0.364466667
Belmopan Belize -88.766940-6.00 -5.91779600-0.082204000
Berlin Germany 13.405000 1.00 0.89366667 0.106333333
Bishkek Kyrgyzstan 74.612220 6.00 4.97414800 1.025852000
Bogotá Colombia -74.072220-5.00 -4.93814800-0.061852000
Brasília Brazil -47.882780-3.00 -3.19218533 0.192185333
Bratislava Slovakia 17.109720 1.00 1.14064800-0.140648000
Bridgetown Barbados -59.616670-4.00 -3.97444467-0.025555333
Bucharest Romania 26.103890 2.00 1.74025933 0.259740667
Budapest Hungary 19.051390 1.00 1.27009267-0.270092667
Buenos Aires Argentina -58.381670-3.00 -3.89211133 0.892111333
Cairo Egypt 31.233000 2.00 2.08220000-0.082200000
Caracas Venezuela -66.903610-4.00 -4.46024067 0.460240667
Castries Saint Lucia -60.983000-4.00 -4.06553333 0.065533333
Chi<U+0219>inau Moldova 28.835335 2.00 1.92235567 0.077644333
Conakry Guinea -13.712220 0.00 -0.91414800 0.914148000
Copenhagen Denmark 12.568330 1.00 0.83788867 0.162111333
Dakar Senegal -17.446670 0.00 -1.16311133 1.163111333
Damascus Syria 36.291940 2.00 2.41946267-0.419462667
Dhaka Bangladesh 90.388890 6.00 6.02592600-0.025926000
Dili East Timor 125.567000 9.00 8.37113333 0.628866667
Djibouti Djibouti 43.145000 3.00 2.87633333 0.123666667
Dodoma Tanzania 35.741940 3.00 2.38279600 0.617204000
Doha Qatar 51.533330 3.00 3.43555533-0.435555333
Dublin Ireland -6.267000 0.00 -0.41780000 0.417800000
Dushanbe Tajikistan 68.780000 5.00 4.58533333 0.414666667
Gaborone Botswana 25.912220 2.00 1.72748133 0.272518667
Georgetown Guyana -58.155280-4.00 -3.87701867-0.122981333
Guatemala City Guatemala -90.535280-6.00 -6.03568533 0.035685333
Hanoi Vietnam 105.854170 7.00 7.05694467-0.056944667
Harare Zimbabwe 31.052220 2.00 2.07014800-0.070148000
Havana Cuba -82.358890-5.00 -5.49059267 0.490592667
Helsinki Finland 24.937500 2.00 1.66250000 0.337500000
Honiara Solomon Islands 159.95556011.00 10.66370400 0.336296000
Islamabad Pakistan 73.063890 5.00 4.87092600 0.129074000
Jakarta Indonesia 106.817000 7.00 7.12113333-0.121133333
Jerusalem Israel 35.217000 2.00 2.34780000-0.347800000
Jerusalem Palestine 35.217000 2.00 2.34780000-0.347800000
Juba South Sudan 31.600000 3.00 2.10666667 0.893333333
Kabul Afghanistan 69.178330 4.50 4.61188867-0.111888667
Kampala Uganda 32.581110 3.00 2.17207400 0.827926000
Kathmandu Nepal 85.267000 5.75 5.68446667 0.065533333
Khartoum Sudan 32.560000 2.00 2.17066667-0.170666667
Kiev Ukraine 30.523330 2.00 2.03488867-0.034888667
Kigali Rwanda 30.059440 2.00 2.00396267-0.003962667
Kingston Jamaica -76.793060-5.00 -5.11953733 0.119537333
Kingstown Saint Vincent and the Grenadines -61.225000-4.00 -4.08166667 0.081666667
Kuala Lumpur Malaysia 101.695280 8.00 6.77968533 1.220314667
Kuwait City Kuwait 47.978330 3.00 3.19855533-0.198555333
Lilongwe Malawi 33.783000 2.00 2.25220000-0.252200000
Lima Peru -77.033000-5.00 -5.13553333 0.135533333
Lisbon Portugal -9.150019 0.00 -0.61000129 0.610001287
Ljubljana Slovenia 14.508330 1.00 0.96722200 0.032778000
Lomé Togo 1.222780 0.00 0.08151867-0.081518667
London United Kingdom -0.127500 0.00 -0.00850000 0.008500000
Lusaka Zambia 28.283000 2.00 1.88553333 0.114466667
Luxembourg Luxembourg 6.131940 1.00 0.40879600 0.591204000
Madrid Spain -3.717000 1.00 -0.24780000 1.247800000
Majuro Marshall Islands 171.38300012.00 11.42553333 0.574466667
Malabo Equatorial Guinea 8.783000 1.00 0.58553333 0.414466667
Malé Maldives 73.508890 5.00 4.90059267 0.099407333
Managua Nicaragua -86.251390-6.00 -5.75009267-0.249907333
Manila Philippines 120.977200 8.00 8.06514667-0.065146667
Maputo Mozambique 32.583000 2.00 2.17220000-0.172200000
Maseru Lesotho 27.480000 2.00 1.83200000 0.168000000
Mexico City Mexico -99.133000-6.00 -6.60886667 0.608866667
Minsk Belarus 27.567000 3.00 1.83780000 1.162200000
Mogadishu Somalia 45.333000 3.00 3.02220000-0.022200000
Monaco Monaco 7.417000 1.00 0.49446667 0.505533333
Monrovia Liberia -10.801390 0.00 -0.72009267 0.720092667
Montevideo Uruguay -56.181940-3.00 -3.74546267 0.745462667
Moroni Comoros 43.256000 3.00 2.88373333 0.116266667
Moscow Russia 37.617000 3.00 2.50780000 0.492200000
Muscat Oman 58.408330 4.00 3.89388867 0.106111333
Nairobi Kenya 36.817220 3.00 2.45448133 0.545518667
Nassau Bahamas -77.345000-5.00 -5.15633333 0.156333333
Naypyidaw Myanmar 96.100000 6.50 6.40666667 0.093333333
New Delhi India 77.208890 5.50 5.14725933 0.352740667
Ngerulmud Palau 134.624170 9.00 8.97494467 0.025055333
Niamey Niger 2.125280 1.00 0.14168533 0.858314667
Nicosia Cyprus 33.365000 2.00 2.22433333-0.224333333
Nuku<U+02BB>alofa Tonga -175.20000013.00-11.68000000 0.680000000
Nur-Sultan Kazakhstan 71.433000 6.00 4.76220000 1.237800000
Oslo Norway 10.733330 1.00 0.71555533 0.284444667
Ottawa Canada -75.695000-5.00 -5.04633333 0.046333333
Ouagadougou Burkina Faso -1.535280 0.00 -0.10235200 0.102352000
Palikir Federated States of Micronesia 158.15889011.00 10.54392600 0.456074000
Paramaribo Suriname -55.203890-3.00 -3.68025933 0.680259333
Paris France 2.352222 1.00 0.15681480 0.843185200
Phnom Penh Cambodia 104.921110 7.00 6.99474067 0.005259333
Podgorica Montenegro 19.262892 1.00 1.28419278-0.284192780
Port Louis Mauritius 57.504170 4.00 3.83361133 0.166388667
Port Moresby Papua New Guinea 147.14944010.00 9.80996267 0.190037333
Port Vila Vanuatu 168.31700011.00 11.22113333-0.221133333
Port-au-Prince Haiti -72.333000-5.00 -4.82220000-0.177800000
Port of Spain Trinidad and Tobago -61.517000-4.00 -4.10113333 0.101133333
Prague Czech Republic 14.417000 1.00 0.96113333 0.038866667
Pretoria South Africa 28.188060 2.00 1.87920400 0.120796000
Pyongyang North Korea 125.738060 9.00 8.38253733 0.617462667
Quito Ecuador -78.517000-5.00 -5.23446667 0.234466667
Rabat Morocco -6.841650 1.00 -0.45611000 1.456110000
Riga Latvia 24.106390 2.00 1.60709267 0.392907333
Riyadh Saudi Arabia 46.717000 3.00 3.11446667-0.114466667
Rome Italy 12.500000 1.00 0.83333333 0.166666667
San José Costa Rica -84.083000-6.00 -5.60553333-0.394466667
San Marino San Marino 12.447300 1.00 0.82982000 0.170180000
San Salvador El Salvador -89.191390-6.00 -5.94609267-0.053907333
Sana'a Yemen 44.206390 3.00 2.94709267 0.052907333
Santiago Chile -70.667000-4.00 -4.71113333 0.711133333
São Tomé São Tomé and Príncipe 6.730560 0.00 0.44870400-0.448704000
Sarajevo Bosnia and Herzegovina 18.417000 1.00 1.22780000-0.227800000
Singapore Singapore 103.833000 8.00 6.92220000 1.077800000
Skopje North Macedonia 21.433000 1.00 1.42886667-0.428866667
Sofia Bulgaria 23.330000 2.00 1.55533333 0.444666667
Sri Jayawardenepura KotteSri Lanka 79.887836 5.50 5.32585574 0.174144260
St. George's Grenada -61.750000-4.00 -4.11666667 0.116666667
St. John's Antigua and Barbuda -61.850000-4.00 -4.12333333 0.123333333
Stockholm Sweden 18.068610 1.00 1.20457400-0.204574000
Sucre Bolivia -65.250000-4.00 -4.35000000 0.350000000
Suva Fiji 178.44190012.00 11.89612667 0.103873333
Tallinn Estonia 24.745280 2.00 1.64968533 0.350314667
Tashkent Uzbekistan 69.267000 5.00 4.61780000 0.382200000
Tbilisi Georgia 44.783000 4.00 2.98553333 1.014466667
Tegucigalpa Honduras -87.217000-6.00 -5.81446667-0.185533333
Tehran Iran 51.388890 3.50 3.42592600 0.074074000
Thimphu Bhutan 89.636110 6.00 5.97574067 0.024259333
Tokyo Japan 139.692220 9.00 9.31281467-0.312814667
Tripoli Libya 13.191390 2.00 0.87942600 1.120574000
Tunis Tunisia 10.181670 1.00 0.67877800 0.321222000
Ulaanbaatar Mongolia 106.917220 8.00 7.12781467 0.872185333
Vaduz Liechtenstein 9.521000 1.00 0.63473333 0.365266667
Valletta Malta 14.506940 1.00 0.96712933 0.032870667
Vatican City Vatican City 12.452500 1.00 0.83016667 0.169833333
Vienna Austria 16.367000 1.00 1.09113333-0.091133333
Vientiane Laos 102.600000 7.00 6.84000000 0.160000000
Vilnius Lithuania 25.283000 2.00 1.68553333 0.314466667
Warsaw Poland 21.017000 1.00 1.40113333-0.401133333
Washington, D.C. United States -77.016390-5.00 -5.13442600 0.134426000
Wellington New Zealand 174.77722012.00 11.65181467 0.348185333
Windhoek Namibia 17.083610 2.00 1.13890733 0.861092667
Yamoussoukro Ivory Coast -5.283000 0.00 -0.35220000 0.352200000
Yaoundé Cameroon 11.517000 1.00 0.76780000 0.232200000
Yaren Nauru 166.92086712.00 11.12805778 0.871942220
Yerevan Armenia 44.514440 4.00 2.96762933 1.032370667
Zagreb Croatia 15.983000 1.00 1.06553333-0.065533333

Comments

Your browser is out-of-date!

Update your browser to view this website correctly. Update my browser now

×